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1 Introduction
References. This document is a specification of the voting protocol implemented in Belenios 3.1
. A high level description of Belenios and some statistics about its usage can be found in [5]. A
security proof of the protocol for ballot privacy and verifiability is presented in [3]. The proof has
been conducted with the tool EasyCrypt. It focuses on the protocol aspects and assumes security
of the cryptographic primitives. The cryptographic primitives have been introduced in various
places and their security proofs is spread across several references.

• The threshold decryption scheme is based on a “folklore” scheme: Pedersen’s [9] Distributed
Key Generation (DKG) that has several variations. The variant considered in Belenios is
proved in [2].

• Ballots are composed of an ElGamal encryption of the votes and a zero-knowledge proof
of well-formedness, as for the Helios protocol [1]. Compared to Helios, we support blank
votes, which required to adapt the zero-knowledge proofs, as specified and proved in [7].
Additionally, ballots are signed to avoid ballot stuffing, as introduced in [4] and also described
in [5]. Zero-knowledge proofs include the complete description of the group to avoid attacks
described in [6].

• During the tally phase, Belenios supports two modes. Ballots are either combined homo-
morphically or shuffled and randomized, using mixnets. The mixnet algorithms are taken
from the CHVote specification [8].

Types of supported elections. Belenios supports two main types of questions. In the homo-
morphic case, voters can select between k1 and k2 candidates out of k candidates. This case is
called homomorphic because the result of the election for such questions is the number of votes
received for each candidate. No more information is leaked. In the non-homomorphic case, voters
can give a number to each candidate. This can be used to rank candidates or grade them. Then
the (raw) result of the election is simply the list of votes, as emitted by the voters, in a random
order, to preserve privacy. Any counting method can then be applied (e.g. Condorcet, STV, or
majority judgement) although Belenios does not offer support for this. The non-homomorphic
case therefore offers much more flexibility, at the cost of extra steps during the tally (in order to
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securely shuffle the ballots). Belenios supports both types of questions and an election can even
mix homomorphic and non-homomorphic questions.

Group parameters. The cryptography involved in Belenios needs a cyclic group G where
discrete logarithms are hard to compute. We will denote by g a generator and q its order. We
use a multiplicative notation for the group operation. In practice, G can be either a prime order
multiplicative subgroup of F∗

p (hence, all exponentiations are implicitly done modulo p), or a prime
order subgroup of the points of an elliptic curve. We suppose the group parameters are agreed on
beforehand. Examples of supported groups are given in section 5.

Weights. In the homomorphic case (and only in the homomorphic case), each voter has a
weight: a ballot is counted as many times as the weight of its owner. Usually, the weight of all
voters is 1 but sometimes, it may be useful to assign different weights. We assume the sum of all
weights is not too big, so that it can be computed as the discrete logarithm of some group element.

2 Parties
• A: server administrator

• C: credential authority

• T1, . . . , Tm: trustees

• V1, . . . ,Vn: voters; each voter has a weight wi equal to 1 by default

• S: voting server
The voting server maintains the public data D (see 4.4) that consists of a sequence of data
and events, and is structured as a hash chain. It contains in particular:

– the election data E
– the structure PK that contains the verification keys of the trustees and other verifica-

tion material
– the list L of public credentials
– the list B of accepted ballots
– the result of the election result (once the election is tallied)

The voting server also produces a list PB of pretty ballots, that is a list of hashes of ballots
(the last ballot of each voter).

3 Processes
3.1 Election setup

1. A starts the preparation of an election, providing in particular the questions and the list of
voters

2. S generates a fresh uuid u and sends it to C

3. C generates random private credentials c1, . . . , cn and computes

L = sort((public(c1), w1,V1), . . . , (public(cn), wn,Vn))

4. for j ∈ [1 . . . n], C sends cj to Vj

5. (optional) C forgets c1, . . . , cn
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6. C sends L to S

7. S checks that the Vi and the wi in L are correct, and that all public credentials are distinct;

8. S defines the shape of the trustees structure that will be used in the election depending
on A’s instructions;

9. S and T1, . . . , Tm run key establishment protocols (see 3.1.1) as needed to fill in the trustees
structure;

10. S creates the election E

11. C checks that the list of public credentials in L is exactly the one that appears on the public
data of the election.

Step 5 is optional. It offers a better protection against ballot stuffing in case C unintentionally
leaks private credentials (but disables credential recovery, see Section 3.3).

3.1.1 Filling in the trustees structure

The trustees structure consists of "Single" or "Pedersen" items. For each of these items, one or
several trustees run the corresponding protocol below to produce a sub-key yτ . Once all protocols
have been run, S synthesizes the global election public key y from the sub-keys computed in each
protocol by multiplying them:

y =
∏

τ

yτ

"Single" protocol This protocol involves a single trustee T , whose presence will be required
to compute the tally.

1. T generates a trustee_public_key γ and sends it to S

2. S checks γ

Later, when the election is open:

1. T checks that γ appears in the set of verification keys PK of the election of uuid u (the id
of the election should be publicly known)

The sub-key for this protocol is the public_key field of γ.

"Pedersen" protocol This protocol involves µ trustees T1, . . . , Tµ such that only a subset of
t+ 1 of them will be needed to compute the tally. The original Pedersen DKG scheme [9] assumes
a secret and authenticated channel between each pair of trustees. Since our trustees do not even
have a PKI, we first require that each trustee generates a fresh key pair, that they then use to
encrypt and sign messages for the other trustees. All messages are sent and received (encrypted)
through the voting server, in order to simplify the communication infrastructure.

1. for z ∈ [1 . . . µ],

(a) Tz generates a cert γz and sends it to S
(b) S checks γz

2. S assembles Γ = γ1, . . . , γµ

3. for z ∈ [1 . . . µ],

(a) S sends Γ to Tz and Tz checks it
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(b) Tz generates a polynomial Pz and sends it to S. This corresponds to the actual first
step of the Pedersen protocol. Each trustee generates a secret polynomial fz. Pz

consists in particular of:
• the coefficients of fz, as well as Γ, self signed and encrypted, in order to store them

for the next step
• the signed exponentiated coefficients of fz, to be sent to all trustees
• the evaluation of the polynomial sz,z′ = fz(z′), encrypted for trustee Tz′ and signed

by Tz, for all z′

(c) S checks Pz

4. for z ∈ [1 . . . µ], S computes a vinput viz, that corresponds to the aggregation of the messages
encrypted for z, collected from all the trustees

5. for z ∈ [1 . . . µ],

(a) S sends Γ to Tz and Tz checks it
(b) S sends viz to Tz and Tz checks it
(c) Tz computes a voutput voz and sends it to S. It corresponds to the resulting (signed)

public key share of Tz, with a proof of knowledge of the associated secret key.
(d) S checks voz

6. S extracts encrypted decryption keys K1, . . . ,Kµ and threshold parameters

Later, when the election is open:

1. for z ∈ [1 . . . µ], Tz checks that γz appears in the set of verification keys PK of the election
of uuid u (the id of the election should be publicly known).

The sub-key for this protocol is computed from the polynomials of each trustee as specified in
section 4.6.4.

3.2 Vote
1. V gets public data of E

2. V uses the index in her secret credential c to get her public credential ĉ (from election public
data), and checks that ĉ = public(c)

3. V creates a ballot b, she computes the hash h of b, called tracking number, and submits b
to S

4. S processes b:

(a) let C be the public credential used in b (its credential field)
(b) S checks that (C,wi,V) ∈ L
(c) S checks all zero-knowledge proofs of b
(d) S adds b to D

5. at any time (even after tally), V may check that h (if it is her last ballot) appears in the list
of pretty ballots PB and the weight of her ballot as it appears in PB is equal to her weight
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3.3 Credential recovery
If C has forgotten the private credentials of the voter (optional step 5 of the setup) then credentials
cannot be recovered.

If C has the list of private credentials (associated to the voters), credentials can be recovered:

1. Vi contacts C

2. C looks up Vi’s private credential ci

3. C sends ci to Vi

3.4 Tally
1. A stops S, S computes the initial encrypted_tally Π0, and publishes it in D

2. S extracts the non-homomorphic ciphertexts from the encrypted tally (see section 4.19):

Π̃0 = nh_ciphertexts(Π0)

3. if the election contains a non-homomorphic part, that is, if Π̃0 ̸= [], then for z ∈ [1 . . .m]:

(a) S sends Π̃z−1 to Tz

(b) Tz verifies consistency of D
(c) Tz runs the shuffle algorithm, producing a shuffle σz and sends it to S
(d) S verifies σz, publishes it in D, and extracts Π̃z = ciphertexts(σz)

4. S merges shuffled non-homomorphic ciphertexts with homomorphic ciphertexts, i.e. builds
Π such that:

Π̃m = nh_ciphertexts(Π)

5. for z ∈ [1 . . .m] (or, if in threshold mode, a subset of it of size at least t+ 1),

(a) S sends Π (and Kz if in threshold mode) to Tz

(b) Tz verifies consistency of D
(c) Tz generates a partial_decryption δz and sends it to S
(d) S verifies δz and adds it to D

6. S combines all the partial decryptions, computes and publishes the election result

7. Tz checks that δz and σz (if any) appear in result

3.5 Audit
Belenios can be publicly audited: anyone having access to the (public) election data can check
that the ballots are well formed and that the result corresponds to the ballots. Ideally, the list of
ballots should also be monitored during the voting phase, to guarantee that no ballot disappears.

3.5.1 During the voting phase

At any time, an auditor can retrieve the public board and check its consistency. She should always
record at least the last audited board. Then:

1. she gets the public data D and retrieves the list L of public credentials;

• she records D;
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• for each ballot b in D, she checks that the proofs of b are valid and that the signature
of b is valid and corresponds to one of the keys in L; she also checks that the weights
correspond;

• she computes B̂ = last(B), the list of ballots obtained from B by removing all ballots
that have the same credential except the last one (only the last vote is kept for each
voter, see section 4.17). She checks that the list of hashed ballots in B̂ corresponds to
the pretty ballots PB;

• she checks that D is correctly chained, that is, each event correctly refers to the hash
of its parent’s event;

• she checks that her view is consistent with the fingerprints displayed on the election
main page.

2. she retrieves the previously recorded election data D′ (if it exists) and gets the hash h of the
last event in D′. She checks that h appears as the hash of a parent of an event in D. This
ensures that nothing has been removed from D′.

There is no tool support on the web interface for these checks, instead the command line tools
election verify and election verify-diff can be used.

3.5.2 During and after the tally

The auditor retrieves the public data D and in particular the list B of ballots, the list Σ of shuffles
(if any), the list ∆ of partial decryptions and the result r. Then:

1. she checks consistency of B, that is, performs all the checks described at step 1 of sec-
tion 3.5.1;

2. she checks that B corresponds to the board monitored so far, thus performs all the checks
described at step 2 of section 3.5.1;

3. she computes B̂ = last(B), that is, she keeps only the last ballots (see section 4.17);

4. she checks that the encrypted_tally corresponds to B̂;

5. as soon as they are available, she checks that the proofs in Σ and ∆, and the result r, are
valid w.r.t. B̂;

6. she checks that her view is consistent with the fingerprints displayed on the election main
page.

To ease verification of the trustees and the credential authorities, it is possible to display the hash
of their public data (e.g. the public keys and the partial decryptions of the trustees, the hash of
the list of the public credentials) in some human-readable form. In that case, the audit should
also check that this human-readable data is consistent with the election data.

There is no tool support on the web interface for these checks, instead the command line tool
election verify can be used.

4 Messages
4.1 Conventions
Structured data is encoded in JSON (RFC 4627). When serialized, data must be in compact form,
and order of fields must be respected. We use the notation field(o) to access the field field of o.
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4.2 Basic types
• string: JSON string

• uuid: election identifier (a string of Base58 characters1 of size at least 14), encoded as a
JSON string

• I: small integer, encoded as a JSON number

• B: boolean, encoded as a JSON boolean

• N, Zq: big integer, written in base 10 and encoded as a JSON string

• G: a JSON string, whose interpretation depends on the group

• H: hash (typically SHA256), written in hexadecimal and encoded as a JSON string

4.3 Common structures

proof =
{

challenge : Zq

response : Zq

}
ciphertext =

{
alpha : G

beta : G

}

4.4 Public data
During an election, all public data is published in a dynamic file. This file can be used to perform
verifications and monitoring. It is actually an old-style tar archive and evolves in an append-only
fashion. It stops evolving when the election is tallied.

The archive starts with a BELENIOS file containing a JSON structure that acts as a header
for the whole archive. It contains a version number and the timestamp of the beginning of the
election. It is then followed by JSON files of two kinds: data (whose names end in .data.json)
and events (whose names end in .event.json). The file names start with the SHA256 hash of
their contents, encoded in hexadecimal.

header =
{

version : I

timestamp : I

}
event =


?parent : H

height : I

type : event_type
?payload : H


event_type =

"Setup"
| "Ballot" | "EndBallots"
| "EncryptedTally"
| "Shuffle" | "EndShuffles"
| "PartialDecryption" | "Result"

An event structure is appended at each important step of the election (e.g. when somebody
votes). This structure refers to its predecessor (except for the first one) through its parent field,
and can refer to a payload by its hash. Its height field is an integer, set to 0 in the first event,
and incremented in each new event. Typically, the payload will precede the event structure in
the archive, and can itself refer to other payloads that precede. The type of the payload depends
on the type field of the event structure.

The typical sequence of data and events occurring in an archive is described in the following
table:

1Base58 characters are: 123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz
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Data Event Defined in section
election 4.10
trustees 4.7

public_credentials 4.8
setup_data 4.10

Setup
ballot 4.17

Ballot
...

...
EndBallots

encrypted_tally 4.18
sized_encrypted_tally 4.18

EncryptedTally
shuffle 4.19

owned_shuffle 4.19
Shuffle

...
...

EndShuffles
partial_decryption 4.20

owned_partial_decryption 4.20
PartialDecryption

...
...

result 4.21
Result

4.5 Verification keys

public_key = G private_key = Zq

trustee_public_key =

 pok : proof
public_key : public_key
?signature : proof


A private key is a number x modulo q, chosen at random in the basic decryption mode,

and computed after several interactions in the threshold mode. The corresponding public_key
is X = gx. A trustee_public_key is a bundle of this public key with a proof of knowledge
computed as follows:

1. pick a random w ∈ Zq

2. compute A = gw

3. challenge = Hpok(X,A) mod q

4. response = w − x× challenge mod q

where Hpok is computed as follows:

Hpok(X,A) = SHA256(pok|G|X|A)

where pok and the vertical bars are verbatim, and G is the string specifying the group in the
election structure. The result is interpreted as a 256-bit big-endian number. The proof is
verified as follows:
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1. compute A = gresponse ×Xchallenge

2. check that challenge = Hpok(X,A) mod q

The signature field is present only in threshold mode, and is the signature of public_key by its
owner, as described in section 4.6.1.

4.6 Messages specific to threshold decryption support
4.6.1 Public key infrastructure

Establishing a public key so that threshold decryption is supported requires private communica-
tions between trustees. To achieve this, Belenios uses a custom public key infrastructure. During
the key establishment protocol, each trustee starts by generating a secret seed (at random), then
derives from it encryption and decryption keys, as well as signing and verification keys. These
four keys are then used to exchange messages between trustees by using S as a proxy.

The secret seed s is a 22-character string, where characters are taken from the set:

123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz

Deriving keys The (private) signing key sk is derived by computing the SHA256 of s prefixed
by the string sk|. The corresponding (public) verification key is gsk. The (private) decryption
key dk is derived by computing the SHA256 of s prefixed by the string dk|. The corresponding
(public) encryption key is gdk.

Signing Signing takes a signing key sk and a message M (as a string), computes a signature and
produces a signed_msg. For the signature, we use a (Schnorr-like) non-interactive zero-knowledge
proof.

signed_msg =
{

message : string
signature : proof

}
To compute the signature,

1. pick a random w ∈ Zq

2. compute the commitment A = gw

3. compute the challenge as SHA256(sigmsg|M|A), where the result is interpreted as a 256-bit
big-endian number

4. compute the response as w − sk× challenge mod q

To verify a signature using a verification key vk,

1. compute the commitment A = gresponse × vkchallenge

2. check that challenge = SHA256(sigmsg|M|A)

Encrypting Encrypting takes an encryption key ek and a message M (as a string), computes
an encrypted_msg and serializes it as a string. We use an El Gamal-like system.

encrypted_msg =


?algorithm : string

alpha : G

beta : G

data : string


To compute the encrypted_msg:
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1. pick random r, s ∈ Zq

2. compute alpha = gr

3. compute beta = ekr × gs

4. compute data as the hexadecimal encoding of the (symmetric) encryption ofM using algorithm
(AES-CCM by default, can also be AES-GCM) with SHA256(key|gs) as the key and SHA256(iv|gr)
as the initialization vector

To decrypt an encrypted_msg using a decryption key dk:

1. compute the symmetric key as SHA256(key|beta/(alphadk))

2. compute the initialization vector as SHA256(iv|alpha)

3. decrypt data

4.6.2 Certificates

A certificate is a signed_msg encapsulating a serialized cert_keys structure, itself filled with
the public keys generated as described in section 4.6.1. Each certificate comes with a context
containing the string description of the group, the number of trustees participating in the Pedersen
protocol, the threshold and the index (starting at 1) of the owner of the certificate.

context =


group : string

size : I

threshold : I

index : I

 cert_keys =

 context : context
verification : G

encryption : G


cert = signed_msg

The message is signed with the signing key associated to verification.

4.6.3 Channels

A message is sent securely from sk (a signing key) to recipient (an encryption key) by encapsulating
it in a channel_msg, serializing it as a string, signing it with sk and serializing the resulting
signed_msg as a string, and finally encrypting it with recipient. The resulting string will be
denoted by send(sk, recipient,message), and can be transmitted using a third-party (typically the
election server).

channel_msg =
{

recipient : G

message : string

}
When decoding such a message, recipient must be checked.

4.6.4 Polynomials

Let Γ = γ1, . . . , γm be the certificates of all trustees. We will denote by vkz (resp. ekz) the
verification key (resp. the encryption key) of γz. Each trustee must compute a polynomial structure
in step 3 of the key establishment protocol.

polynomial =


polynomial : string

secrets : string∗

coefexps : coefexps
signature : proof


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Suppose Ti is the trustee who is computing. Therefore, Ti knows the signing key ski corresponding
to vki and the decryption key dki corresponding to eki. Ti first checks that keys indeed match.
Then Ti picks a random polynomial

fi(x) = ai0 + ai1x+ · · ·+ aitx
t ∈ Zq[x]

and computes Aik = gaik for k = 0, . . . , t and sij = fi(j) mod q for j = 1, . . . ,m. Ti then fills the
polynomial structure as follows:

• the polynomial field is send(ski, eki,M) where M is a serialized raw_polynomial structure

raw_polynomial =
{

polynomial : Z∗
q

}
filled with ai0, . . . , ait

• the secrets field is send(ski, ek1,Mi1), . . . , send(ski, ekm,Mim) whereMij is a serialized secret
structure

secret =
{

secret : Zq

}
filled with sij

• the coefexps field is a signed message containing a serialized raw_coefexps structure

coefexps = signed_msg raw_coefexps =
{

coefexps : G∗ }
filled with Ai0, . . . , Ait

• the signature field is computed as follows:

1. let M be the string certs_sig| followed by the compact JSON serialization of the
following structure:

certs =
{

certs : cert∗

coefexps : G∗

}
where certs is set to Γ = γ1, . . . , γm and coefexps is set to Ai0, . . . , Ait

2. the field is set to the signature of M with ski as described in 4.6.1

The sub-key for this protocol run will be:

y =
∏

z∈[1...m]

gfz(0) =
∏

z∈[1...m]

Az0

4.6.5 Vinputs

Once we receive all the polynomial structures P1, . . . , Pm, we compute (during step 4) input data
(called vinput) for a verification step performed later by the trustees. Step 4 can be seen as a
routing step.

vinput =


polynomial : string

secrets : string∗

coefexps : coefexps∗

signatures : proof∗


Suppose we are computing the vinput structure vij for trustee Tj . We fill it as follows:

• the polynomial field is the same as the one of Pj

• the secret field is secret(P1)j , . . . , secret(Pm)j

12



• the coefexps field is coefexps(P1), . . . , coefexps(Pm)

• the signatures field is signature(P1), . . . , signature(Pm)

Note that the coefexps field is the same for all trustees.
In step 5, Tj checks consistency of vij by unpacking it and checking that, for i = 1, . . . ,m,

gsij =
t∏

k=0
(Aik)jk

4.6.6 Voutputs

In step 5 of the key establishment protocol, a trustee Tj receives Γ and vij , and produces a voutput
voj .

voutput =
{

private_key : string
public_key : trustee_public_key

}
Trustee Tj fills voj as follows:

• private_key is set to send(skj , ekj , Sj), where Sj is Tj ’s (private) decryption key:

Sj =
m∑

i=1
sij mod q

• public_key is set to a trustee_public_key structure built using Sj as private key, which
computes the corresponding public key and a proof of knowledge of Sj .

The administrator checks voj as follows:

• check that:

public_key(public_key(voj)) =
m∏

i=1

t∏
k=0

(Aik)jk

• check pok(public_key(voj))

4.6.7 Threshold parameters

The threshold_parameters structure embeds data that is published during the election.

threshold_parameters =


threshold : I

certs : cert∗

coefexps : coefexps∗

signatures : proof∗

verification_keys : trustee_public_key∗


The administrator fills it as follows:

• threshold is set to t+ 1

• certs is set to Γ = γ1, . . . , γm

• coefexps is set to the same value as the coefexps field of vinputs

• signatures is set to the same value as the signatures field of vinputs

• verification_keys is set to public_key(vo1), . . . , public_key(vom)

13



4.7 Trustees

trustees = trustee_kind∗

trustee_kind = ["Single", trustee_public_key] | ["Pedersen", threshold_parameters]

A trustees structure is associated to each election. Such a structure is a list of either a single
verification key as described in section 4.5, or threshold parameters as described in section 4.6.
Each item describes how a partial decryption is computed: either a specific (mandatory) verifica-
tion key is used to compute a share, or a subset of a set of (optional) verification keys are used to
compute a share.

The generality of this definition allows to mix mandatory and optional trustees during decryp-
tion. For example, in an election with 3 mandatory trustees, the trustees structure will look
like:

[["Single", . . . ], ["Single", . . . ], ["Single", . . . ]]
and in an election where only one trustee is mandatory, and a subset of another set of trustees
(with a threshold) is needed to decrypt the result, will have a trustees structure that looks like:

[["Single", . . . ], ["Pedersen", . . . ]]

As explained in section 3.1.1, the sub-keys of each item ("Single" or "Pedersen") are then
combined to form the global election key.

The server itself must always have a mandatory key, which must be different in each election.
Other (third-party) keys may be imported from one election to another.

4.8 Credentials
A secret credential c is a string of the form XXXXX-XXXXXX-XXXXX-XXXXXX, where the 22 X char-
acters are taken from the Base58 alphabet:

123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz

From c, a secret exponent x = secret(c) is derived as follows:

• for i = 0, 1, let xi = SHA256(derive_credential|uuid|i|c), where uuid is replaced with
the uuid of the election, i is written in base 10, and the result is written in hexadecimal;

• x is the concatenation of x0 and x1, interpreted as a big-endian (512-bit) hexadecimal num-
ber, taken modulo q.

From this secret exponent, a public key public(c) = gx is computed.

public_credentials = string∗

Public credentials, published as part of public data, are a list of strings, each one being:

• either a public credential by itself (if weights are not being used),

• or a public credential, followed by a comma and the weight (if weights are being used).

4.9 Questions

question_h =


answers : string∗

?blank : B

min : I

max : I

question : string

 question_nh =
{

answers : string∗

question : string

}

14



question_l =
{

answers : string∗∗

question : string

}

question_gen =

 type : string
value : json

?extra : json


question = question_h | question_gen

There are three types of questions: homomorphic (H) ones, non-homomorphic (NH) ones and
lists (L) ones. A key difference is the outcome of the election: with H or L questions, only the
pointwise sum of all the answers (see 4.11) will be revealed at the end of the election whereas with
a NH question, each individual answer will be revealed.

4.9.1 Homomorphic questions

Homomorphic questions are represented directly (first alternative). They are the first type of
question that was implemented in Belenios. They are suitable for many elections, like the ones
where the voter is invited to select one choice among several (as in a referendum).

The blank field of question_h is optional. When present and true, the voter can vote blank
for this question. In a blank vote, all answers are set to 0 regardless of the values of min and max
(min doesn’t need to be 0).

4.9.2 Non-homomorphic questions

Non-homomorphic questions are represented nested in a question_gen structure (second alter-
native), where the type property is set to NonHomomorphic, and the value property is set to a
question_nh structure. They are needed when homomorphic questions are not suitable, for ex-
ample when answers represent preferences or are too big. An extra field may be present, to give a
hint on the intended counting method (Majority Judgment, Condorcet, STV, . . . ).

4.9.3 Lists questions

Lists questions are represented nested in a question_gen structure (second alternative), where
the type property is set to Lists, and the value property is set to a question_l structure. Such
questions are suitable to elect candidates grouped in lists. Here, answers is a vector of vectors of
strings with the shape:

[[L1, C1,1, . . . ], . . . , [Ln, Cn,1, . . . ]]
where Li is the name of list i and Ci,j is the name of candidate j of list i. The voter is asked to
select one list Li among L1, . . . , Ln and, in this list, at least one candidate among Ci,1, . . . , Ci,ni

.

4.10 Elections

election =



version : I

description : string
name : string
group : string

public_key : G

questions : question∗

uuid : uuid
?administrator : string

?credential_authority : string


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The election structure includes all public data related to an election and is sent to each voter,
serialized as a string which must be always the same throughout the election. The version is set to
1 in this version of the specification. It is incremented in case of backward-incompatible changes.
The group is specified by the group member, a short string unambiguously describing the group
(see section 5).

The election public key, which is denoted by y throughout this document, is computed during
the setup phase, and stored in the public_key member.

During an election, the following data need to be public in order to verify the setup phase and
to validate ballots:

• the election structure described above;

• the trustees structure described in section 4.7;

• the public_credentials structure described in section 4.8.

These three structures are referred to by the following structure, used as payload of the Setup
event in public data.

setup_data =

 election : H

trustees : H

credentials : H


Additionally, we will denote throughout this document by φ the Base64 encoding of the election

field of setup_data, without padding.

4.11 Encrypted answers

answer_h =


choices : ciphertext∗

individual_proofs : iproof∗

overall_proof : iproof
?blank_proof : proof2


answer_nh =

{
choices : ciphertext

proof : proof

}

answer_l =


choices : ciphertext∗∗

individual_proofs : iproof∗∗

overall_proof : proof
list_proofs : proof∗∗

nonzero_proof : nonzero_proof


answer = answer_h | answer_nh | answer_l

The structure of an answer to a question depends on the type of the question. In all cases, a
credential c is needed. Let s be the number secret(c), and S0 be the string φ followed by a vertical
bar and the serialization of gs.
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4.11.1 Homomorphic answers

An answer to a homomorphic question is the vector choices of encrypted values given to each
answer. When blank is false (or absent), a blank vote is not allowed and this vector has the same
length as answers; otherwise, a blank vote is allowed and this vector has an additionnal leading
value corresponding to whether the vote is blank or not. Each value comes with a proof (in
individual_proofs, same length as choices) that it is 0 or 1. The whole answer also comes with
additional proofs that values respect constraints.

More concretely, each value m ∈ [0 . . . 1] is encrypted (in an El Gamal-like fashion) into a
ciphertext as follows:

1. pick a random r ∈ Zq

2. alpha = gr

3. beta = yrgm

where y is the election public key. The resulting vector is then used to compute S as follows:

1. let a be the vector choices, where each ciphertext c is replaced by the serialization of its
alpha field, a comma, and the serialization of its beta field;

2. let b be the concatenation of all strings in a, separated by commas;

3. let S be the string S0 followed by a vertical bar and b.

The individual proof that m ∈ [0 . . . 1] is computed by running iprove(S0, r,m, 0, 1) (see sec-
tion 4.12).

When a blank vote is not allowed, overall_proof proves that M ∈ [min . . .max] and is computed
by running iprove(S,R,M − min,min, . . . ,max) where R is the sum of the r used in ciphertexts,
and M the sum of the m. There is no blank_proof.

When a blank vote is allowed, and there are n choices, the answer is modeled as a vector
(m0,m1, . . . ,mn), when m0 is whether this is a blank vote or not, and mi (for i > 0) is whether
choice i has been selected. Each mi is encrypted and proven equal to 0 or 1 as above. Let
mΣ = m1 + · · ·+mn. The additional proofs are as follows:

• blank_proof proves that m0 = 0 ∨mΣ = 0;

• overall_proof proves that m0 = 1 ∨mΣ ∈ [min . . .max].

They are computed as described in section 4.13.

4.11.2 Non-homomorphic answers

The plaintext answer to a non-homomorphic question is a vector [v1, . . . , vn] of small integers, one
for each possible choice. When an election contains such a question, G must support the to_ints
and of_ints operations (see section 5). The answer is encrypted as follows:

• ξ = of_ints([v1, . . . , vn])

• choices is set to an El Gamal encryption of ξ as follows:

1. pick a random r ∈ Zq

2. alpha = gr

3. beta = yrξ

where y is the election public key;

• proof is computed as follows:
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1. pick a random w ∈ Zq

2. compute A = gw

3. challenge = Hraweg(S, y, alpha, beta, A)
4. response = w − r × challenge

where Hraweg is computed as follows:

Hraweg(S, y, α, β,A) = SHA256(raweg|S|y,α,β|A) mod q

where raweg, vertical bars and commas are verbatim. The result is interpreted as a 256-bit
big-endian number.

The proof is verified as follows:

1. compute A = gresponse × alphachallenge

2. check that challenge = Hraweg(S, y, alpha, beta, A)

4.11.3 Lists answers

The plaintext answer to a lists question is a vector of vectors of bits

m = [[L1, C1,1, . . . ], . . . , [Ln, Cn,1, . . . ]]

where:

• Li represents if list i is selected;

• Ci,j represents if candidate j of list i is selected.

The corresponding encrypted answer consists of:

• choices: the pointwise encryptions of bits of m, like in homomorphic answers;

• individual_proofs: proofs that m contains only bits (0 or 1), like in homomorphic answers;

• overall_proof: a proof that
∑

i Li = 1 (exactly one list is selected);

• list_proofs: a vector of proofs [π1, . . . , πn] where each πi proves that Li = 1 ∨
∑

j Ci,j = 0
(each list is either selected, or all its candidates are not selected);

• nonzero_proof: a proof that
∑

i

∑
j Ci,j ̸= 0 (at least one candidate is selected).

Encryptions Each bit mi,j in m is encrypted (in an El Gamal-like fashion) into a ciphertext
ci,j as follows:

1. pick a random ri,j ∈ Zq

2. alpha = gri,j

3. beta = yri,jgmi,j

Individual proofs Each individual proof that mi,j ∈ {0, 1} is computed by running:

iprove(S0, ri,j ,m, 0, 1)

Like in homomorphic answers, other proofs in lists answers use a string S built as follows:

• let a be choices, where each ciphertext c is replaced by the serialization of its alpha field, a
comma, and the serialization of its beta field;

• let b be the concatenation of all strings in a, separated by commas;

• let S be the string S0 followed by a vertical bar and b.
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Overall proof The overall proof that
∑

i Li = 1(=
∑

i mi,0) is computed by running:

iprove
(
S,

(∑
i

ri,0

)
,

(∑
i

mi,0

)
, 1, 1

)

List proofs See section 4.14.

Non-zero proof To prove that
∑

i

∑
j Ci,j ̸= 0:

1. compute r =
∑

i

∑
j ̸=0 ri,j , α =

∏
i

∏
j ̸=0 alpha(ci,j) and β =

∏
i

∏
j ̸=0 beta(ci,j);

• (α, β) is the encryption of
∑

i

∑
j Ci,j with random r;

2. prove that (α, β) encrypts a non-zero value with random r (see section 4.15).

4.12 Proofs of interval membership

iproof = proof∗

Given a pair (α, β) of group elements, one can prove that it has the form (gr, yrgMi) with
Mi ∈ [M0, . . . ,Mk] by creating a sequence of proofs π0, . . . , πk with the following procedure,
parameterised by a string S:

1. for j ̸= i:

(a) create πj with a random challenge and a random response
(b) compute

Aj = gresponse × αchallenge and Bj = yresponse × (β/gMj )challenge

2. πi is created as follows:

(a) pick a random w ∈ Zq

(b) compute Ai = gw and Bi = yw

(c) challenge(πi) = Hiprove(S, α, β,A0, B0, . . . , Ak, Bk)−
∑

j ̸=i challenge(πj) mod q

(d) response(πi) = w − r × challenge(πi) mod q

In the above, Hiprove is computed as follows:

Hiprove(S, α, β,A0, B0, . . . , Ak, Bk) = SHA256(prove|S|α,β|A0,B0, . . . ,Ak,Bk) mod q

where prove, vertical bars and commas are verbatim. The result is interpreted as a 256-bit
big-endian number. We will denote the whole procedure by iprove(S, r, i,M0, . . . ,Mk).

The proof is verified as follows:

1. for j ∈ [0 . . . k], compute

Aj = gresponse(πj) × αchallenge(πj) and Bj = yresponse(πj) × (β/gMj )challenge(πj)

2. check that

Hiprove(S, α, β,A0, B0, . . . , Ak, Bk) =
∑

j∈[0...k]

challenge(πj) mod q
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4.13 Proofs of possibly-blank votes
In this section, we suppose:

(α0, β0) = (gr0 , yr0gm0) and (αΣ, βΣ) = (grΣ , yrΣgmΣ)
Note that αΣ, βΣ and rΣ can be easily computed from the encryptions of m1, . . . ,mn and their
associated secrets.

Additionally, let M1, . . . ,Mk be the sequence min, . . . ,max (k = max−min + 1).

4.13.1 Non-blank votes (m0 = 0)

Computing blank_proof In m0 = 0 ∨mΣ = 0, the first case is true. The proof blank_proof of
the whole statement is the couple of proofs (π0, πΣ) built as follows:

1. pick random challenge(πΣ) and response(πΣ) in Zq

2. compute AΣ = gresponse(πΣ) × αchallenge(πΣ)
Σ and BΣ = yresponse(πΣ) × βchallenge(πΣ)

Σ

3. pick a random w in Zq

4. compute A0 = gw and B0 = yw

5. compute
challenge(π0) = Hbproof0(S,A0, B0, AΣ, BΣ)− challenge(πΣ) mod q

6. compute response(π0) = w − r0 × challenge(π0) mod q

In the above, Hbproof0 is computed as follows:
Hbproof0(. . . ) = SHA256(bproof0|S|A0,B0,AΣ,BΣ) mod q

where bproof0, vertical bars and commas are verbatim. The result is interpreted as a 256-bit
big-endian number.

Computing overall_proof In m0 = 1 ∨ mΣ ∈ [M1 . . .Mk], the second case is true. Let i be
such that mΣ = Mi. The proof of the whole statement is a (k + 1)-tuple (π0, π1, . . . , πk) built as
follows:

1. pick random challenge(π0) and response(π0) in Zq

2. compute A0 = gresponse(π0) × αchallenge(π0)
0 and B0 = yresponse(π0) × (β0/g)challenge(π0)

3. for j > 0 and j ̸= i:

(a) create πj with a random challenge and a random response in Zq

(b) compute Aj = gresponse × αchallenge
Σ and Bj = yresponse × (βΣ/g

Mj )challenge

4. pick a random w ∈ Zq

5. compute Ai = gw and Bi = yw

6. compute

challenge(πi) = Hbproof1(S,A0, B0, . . . , Ak, Bk)−
∑
j ̸=i

challenge(πj) mod q

7. compute response(πi) = w − rΣ × challenge(πi) mod q

In the above, Hbproof1 is computed as follows:
Hbproof1(. . . ) = SHA256(bproof1|S|A0,B0, . . . ,Ak,Bk) mod q

where bproof1, vertical bars and commas are verbatim. The result is interpreted as a 256-bit
big-endian number.
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4.13.2 Blank votes (m0 = 1)

Computing blank_proof In m0 = 0 ∨mΣ = 0, the second case is true. The proof blank_proof
of the whole statement is the couple of proofs (π0, πΣ) built as in section 4.13.1, but exchanging
subscripts 0 and Σ everywhere except in the call to Hbproof0.

Computing overall_proof In m0 = 1 ∨mΣ ∈ [M1 . . .Mk], the first case is true. The proof of
the whole statement is a (k + 1)-tuple (π0, π1, . . . , πk) built as follows:

1. for j > 0:

(a) create πj with a random challenge and a random response in Zq

(b) compute Aj = gresponse × αchallenge
Σ and Bj = yresponse × (βΣ/g

Mj )challenge

2. pick a random w ∈ Zq

3. compute A0 = gw and B0 = yw

4. compute

challenge(π0) = Hbproof1(S,A0, B0, . . . , Ak, Bk)−
∑
j>0

challenge(πj) mod q

5. compute response(π0) = w − r0 × challenge(π0) mod q

4.13.3 Verifying proofs

Verifying blank_proof A proof of m0 = 0∨mΣ = 0 is a couple of proofs (π0, πΣ) such that the
following procedure passes:

1. compute A0 = gresponse(π0) × αchallenge(π0)
0 and B0 = yresponse(π0) × βchallenge(π0)

0

2. compute AΣ = gresponse(πΣ) × αchallenge(πΣ)
Σ and BΣ = yresponse(πΣ) × βchallenge(πΣ)

Σ

3. check that

Hbproof0(S,A0, B0, AΣ, BΣ) = challenge(π0) + challenge(πΣ) mod q

Verifying overall_proof A proof of m0 = 1∨mΣ ∈ [M1 . . .Mk] is a (k+1)-tuple (π0, π1, . . . , πk)
such that the following procedure passes:

1. compute A0 = gresponse(π0) × αchallenge(π0)
0 and B0 = yresponse(π0) × (β0/g)challenge(π0)

2. for j > 0, compute

Aj = gresponse(πj) × αchallenge(πj)
Σ and Bj = yresponse(πj) × (βΣ/g

Mj )challenge(πj)

3. check that

Hbproof1(S,A0, B0, . . . , Ak, Bk) =
k∑

j=0
challenge(πj) mod q
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4.14 Proofs of list constraints
Proving For each i, the proof of the list constraint that Li = 1 ∨

∑
j Ci,j = 0 is a pair πi =

(πi,0, πi,1) computed as follows:

• let r0 = ri,0, α0 = alpha(ci,0) and β0 = beta(ci,0):

– (α0, β0) is the encryption of Li with random r0;

• compute r =
∑

j ̸=0 ri,j , α =
∏

j ̸=0 alpha(ci,j) and β =
∏

j ̸=0 beta(ci,j):

– (α, β) is the encryption of
∑

j Ci,j with random r;

• if Li = 1:

1. pick random challenge1 and response1 in Zq;
2. compute A1 = gresponse1 × αchallenge1 and B1 = yresponse1 × βchallenge1 ;
3. pick a random w ∈ Zq;
4. compute A0 = gw and B0 = yw;
5. compute h = Hlproof(S,A0, B0, A1, B1);
6. compute challenge0 = h− challenge1 and response0 = w − r0 × challenge0;

• if
∑

j Ci,j = 0:

1. pick random challenge0 and response0 in Zq;

2. compute A0 = gresponse0 × αchallenge0
0 and B0 = yresponse0 × (β0/g)challenge0 ;

3. pick a random w ∈ Zq;
4. compute A1 = gw and B1 = yw;
5. compute h = Hlproof(S,A0, B0, A1, B1);
6. compute challenge1 = h− challenge0 and response1 = w − r × challenge1;

• for k ∈ {0, 1}, build πi,k from challengek and responsek.

In the above, Hlproof is computed as follows:

Hlproof(. . . ) = SHA256(lproof|S|A0,B0,A1,B1) mod q

Verifying A proof composed of challengek and responsek can be verified as follows:

1. compute α0, β0, α and β as above;

2. compute A0 = gresponse0 × αchallenge0
0 and B0 = yresponse0 × (β0/g)challenge0 ;

3. compute A1 = gresponse1 × αchallenge1 and B1 = yresponse1 × βchallenge1 ;

4. check that Hlproof(S,A0, B0, A1, B1) = challenge0 + challenge1.

4.15 Proof of encryption of non-zero

nonzero_proof =

 commitment : G

challenge : Zq

response : Zq × Zq


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Proving To prove that (α, β) is the encryption of m ̸= 0 with random r:
1. pick a random s ∈ Zq such that s ̸= 0;

2. compute A0 = βs × y−s×r:

• notice that m ̸= 0 is equivalent to A0 ̸= 1;
• we also have 1 = αs × g−s×r;
• hence, we resort to proving that A0 (in base (β, y)) and 1 (in base (α, g)) have the same

representation;

3. pick random w1 and w2 in Zq;

4. compute A1 = αw1 × gw2 and A2 = βw1 × yw2 ;

5. compute c = Hnonzero(S,A0, A1, A2);

6. compute t1 = w1 − s× c and t2 = w2 + s× r × c;

7. set commitment to A0, challenge to c and response to (t1, t2).
In the above, Hnonzero is computed as follows:

Hnonzero(. . . ) = SHA256(nonzero|S|A0,A1,A2) mod q

Verifying Following the same notations as above, a proof composed of A0, c, t1 and t2 can be
verified as follows:

1. check that A0 ̸= 1;

2. compute A1 = αt1 × gt2 and A2 = βt1 × yt2 ×Ac
0;

3. check that Hnonzero(S,A0, A1, A2) = c.

4.16 Signatures

signature =
{

hash : string
proof : proof

}
Each ballot contains a (Schnorr-like) digital signature to avoid ballot stuffing. The signature

needs a credential c and uses the hash of the surrounding ballot (without the signature field). It is
computed as follows:

1. compute s = secret(c)

2. pick a random w ∈ Zq

3. compute A = gw

4. compute proof as follows:

(a) challenge = Hsignature(hash, A) mod q

(b) response = w − s× challenge mod q

In the above, Hsignature is computed as follows:
Hsignature(H,A) = SHA256(sig|H|A)

where sig, vertical bars and commas are verbatim. The result is interpreted as a 256-bit big-endian
number.

Signatures are verified as follows (credential and hash can be obtained from the surrounding
ballot):

1. compute A = gresponse × credentialchallenge

2. check that challenge = Hsignature(hash, A) mod q
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4.17 Ballots

ballot =


election_uuid : uuid
election_hash : string

credential : G

answers : answer∗

signature : signature


A ballot references in its credential member the public credential S = gsecret(c,s) (c being the secret
credential) of the voter. The hash (or fingerprint) of the election is φ (see section 4.10).

To compute the hash used in signatures, the ballot without the signature field is first serialized
as a JSON compact string, where object fields are ordered as specified in this document. The hash
is the compact Base64 encoding of the SHA256 of this string. The same hashing function is used
on the serialization of the whole ballot structure to produce a so-called smart ballot tracker.

The weight of a ballot b, denoted by weight(b), is the weight associated to credential(b) in the
list of public credentials L.

Ballots are appended to public data as payloads of Ballot events. The end of ballots is marked
by an EndBallots event without payload.

Tallied ballots The list of tallied ballots B̂ can be computed from the list of all accepted ballots
B with the last function (B̂ = last(B)), defined as follows:

• initialize B̂ with the empty list

• for b ∈ B:

– if there is a ballot in B̂ with the same credential as b, remove it
– add b to B̂

4.18 Encrypted tally

ciphertexts_h = ciphertext∗ ciphertexts_nh = ciphertext∗

encrypted_tally = (ciphertexts_h | ciphertexts_nh)∗

sized_encrypted_tally =

 num_tallied : I

total_weight : I

encrypted_tally : H


A so-called encrypted tally is constructed out of the accepted ballots B̂ = last(B) = b1, . . . , bn (see
section 4.17). It is an array [C1, . . . , Cm] where m is the number of questions. Each element Ci is
itself an array of ciphertexts that is built differently depending on the type of the question:

• for homomorphic questions, each element of Ci (ciphertexts_h) is the pointwise product
of the i-th ciphertext of all the ballots, raised to the power of its weight:

Ci,j =
∏

k

choices(answers(bk)i)weight(bk)
j

where the product of two ciphertexts (α1, β1) and (α2, β2) is (α1α2, β1β2);

• for non-homomorphic questions, Ci is directly made from the list of ciphertexts corresponding
to the question:

Ci,k = choices(answers(bk)i)

In this case, it is an error if weight(bk) ̸= 1.
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In the end, in both cases, the encrypted tally is isomorphic to an array of arrays of ciphertexts:

encrypted_tally ≈ ciphertext∗∗

The sized_encrypted_tally structure contains the number of ballots taken into account,
their total weight, and a reference to the encrypted_tally structure. It is used as the payload
of the EncryptedTally event.

4.19 Shuffles
If the election has non-homomorphic questions, let us say n out of m (1 ≤ n ≤ m), non-
homomorphic ciphertexts must be shuffled. They are first extracted from the encrypted tally a:
if i1, . . . , in are the indices of the non-homomorphic questions,

b = nh_ciphertexts(a) = [ai1 , . . . , ain ]

where a is the encrypted_tally structure defined in 4.18. Conversely, once ciphertexts are
shuffled as b′ (see later), they must be merged into the encrypted tally as a′ such that b′ =
nh_ciphertexts(a′).

Shuffles are done in the same way as the CHVote system2. For each non-homomorphic ques-
tion, its ciphertexts are re-encrypted and randomly permuted, and a zero-knowledge proof of the
permutation is computed. All these shuffles are then assembled into a shuffle structure:

shuffle =
{

ciphertexts : ciphertext∗∗

proofs : shuffle_proof∗

}
which uses the following auxiliary types:

shuffle_commitment_rand = G×G×G× (G×G)×G∗

shuffle_response = Zq × Zq × Zq × Zq × Z∗
q × Z∗

q

shuffle_commitment_perm = G∗

shuffle_chained_challenges = G∗

shuffle_proof = shuffle_commitment_rand
× shuffle_response
× shuffle_commitment_perm
× shuffle_chained_challenges

For each non-homomorphic question i:

1. let e = bi = [e1, . . . , eN ] be the array of ciphertexts corresponding to question i (N being
the number of ballots);

2. let (e′, r′, ψ) = GenShuffle(e, y) (y being the public key of the election);

3. let π = GenShuffleProof(e, e′, r′, ψ, y);

4. set ciphertextsi to e′ and proofsi to π.

The functions GenShuffle and GenShuffleProof are the same as in CHVote and are given in section 6.
Typically, several shuffles will be computed sequentially by different persons.

owned_shuffle =
{

owner : I

payload : H

}
The owned_shuffle structure links a shuffle with the trustee that did it and is used as payload
of Shuffle events.

2See version 1.3.2 of the CHVote System Specification at [8]
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4.20 Partial decryptions

partial_decryption =
{

decryption_factors : G∗∗

decryption_proofs : proof∗∗

}
From the encrypted tally a′ (where answers to non-homomorphic questions have been shuffled),
each trustee computes a partial decryption using the private key x (and the corresponding public
key X = gx) he generated during election setup. It consists of so-called decryption factors:

decryption_factorsi,j = alpha(a′
i,j)x

and proofs that they were correctly computed. Each decryption_proofsi,j is computed as follows:

1. pick a random w ∈ Zq

2. compute A = gw and B = alpha(a′
i,j)w

3. challenge = Hdecrypt(X,A,B)

4. response = w − x× challenge mod q

In the above, Hdecrypt is computed as follows:

Hdecrypt(X,A,B) = SHA256(decrypt|φ|X|A,B) mod q

where decrypt, vertical bars and commas are verbatim. The result is interpreted as a 256-bit
big-endian number.

These proofs are verified using the trustee_public_key structure k that the trustee sent to
the administrator during the election setup:

1. compute
A = gresponse × public_key(k)challenge

B = alpha(a′
i,j)response × decryption_factorschallenge

i,j

2. check that Hdecrypt(public_key(k), A,B) = challenge

owned_partial_decryption =
{

owner : I

payload : H

}
The owned_partial_decryption structure links a partial decryption with the trustee that did it
and is used as payload of PartialDecryption events.

4.21 Election result

result =
{

result : (I∗ | I∗∗)∗ }
The decryption factors are combined for each ciphertext to build synthetic ones Fi,j . The way

this combination is done depends on the trustees structure, the list PK. For each item of index
τ in PK, a sub-factor Fi,j,τ is computed:

• for a "Single" item corresponding to trustee Tz:

Fi,j,τ = partial_decryptionsz,i,j

26



• for a "Pedersen" item corresponding to trustees Tz1 , . . . , Tzµ :

Fi,j,τ =
∏
δ∈I

(partial_decryptionszδ,i,j)λI
δ

where I is the set of (t+ 1) indexes of supplied partial decryptions, relative to Tz1 , . . . , Tzµ

(i.e. I ⊆ {1, . . . , µ}), and λI
δ are the Lagrange coefficients:

λI
δ =

∏
k∈I\{δ}

k

k − δ
mod q

The synthetic factor is then computed as the product of all sub-factors:

Fi,j =
∏

τ

Fi,j,τ

The result field of the result structure is then computed as follows:

• if question i is homomorphic,

resulti,j = logg

(beta(a′
i,j)

Fi,j

)
where j represents an answer. The discrete logarithm can be easily computed because it is
bounded by the sum of all weights;

• if question i is non-homomorphic,

resulti,j = to_ints
(beta(a′

i,j)
Fi,j

)
where j represents a ballot.

5 Groups
A group is identified by a short string. In addition to the usual mathematical group definition, it
must support the following operations:

• check: checking that an element of the surrounding set is indeed a group element;

• to_string, of_string: (de-)serialization to/from strings, used when serializing JSON structures
or computing hashes.

Additionally, it may support the following operations, needed for non-homomorphic questions (see
section 4.11.2):

• to_ints, of_ints: embedding of vectors of small integers into group elements,

• get_generator: a function mapping integers to group generators different from g.

Supported groups include:

• BELENIOS-2048

• RFC-3526-2048

• Ed25519
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5.1 Finite fields
Here, groups are multiplicative subgroups of F∗

p described by the following structure:

group =


g : G

p : N

q : N

?embedding : embedding


When serialized as strings, group elements are written in base 10.

These groups may support non-homomorphic encoding described by the following structure:

embedding =
{

padding : I

bits_per_int : I

}
The encoding works as follows:

• in the following, bits_per_int is denoted by κ and padding by p;

• it is assumed that each vi is κ bits (or less);

• [v1, . . . , vn] is encoded as:

ξ = of_ints([v1, . . . , vn]) = (((v1 × 2κ + v2)× 2κ + · · · )× 2κ + vn)× 2p + ε

where ε (of p bits or less) is chosen so that ξ ∈ G;

• the to_ints is the inverse of of_ints, and takes as input a group element ξ and the number n
of encoded integers.

The get_generator function is the pure part of GetGenerator defined in table 8.

5.1.1 BELENIOS-2048

This group is optimized for elections that have only homomorphic questions. It has no embedding.
Its parameters have been generated by the fips.sage script (available in Belenios sources), which
is itself based on FIPS 186-4.
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p = 20694785691422546
401013643657505008064922989295751104097100884787057374219242
717401922237254497684338129066633138078958404960054389636289
796393038773905722803605973749427671376777618898589872735865
049081167099310535867780980030790491654063777173764198678527
273474476341835600035698305193144284561701911000786737307333
564123971732897913240474578834468260652327974647951137672658
693582180046317922073668860052627186363386088796882120769432
366149491002923444346373222145884100586421050242120365433561
201320481118852408731077014151666200162313177169372189248078
507711827842317498073276598828825169183103125680162072880719

g = 2402352677501852
209227687703532399932712287657378364916510075318787663274146
353219320285676155269678799694668298749389095083896573425601
900601068477164491735474137283104610458681314511781646755400
527402889846139864532661215055797097162016168270312886432456
663834863635782106154918419982534315189740658186868651151358
576410138882215396016043228843603930989333662772848406593138
406010231675095763777982665103606822406635076697764025346253
773085133173495194248967754052573659049492477631475991575198
775177711481490920456600205478127054728238140972518639858334
115700568353695553423781475582491896050296680037745308460627

q = 78571733251071885
079927659812671450121821421258408794611510081919805623223441

The additional output of the generation algorithm is:

domain_parameter_seed = 478953892617249466
166106476098847626563138168027
716882488732447198349000396592
020632875172724552145560167746

counter = 109

5.1.2 RFC-3526-2048

The group described in the previous section is not suitable for encoding non-homomorphic answers.
Therefore, we describe here a different group for cases where the election has non-homomorphic
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questions. This group is the 2048-bit one defined in RFC 3526:

p = 32317006071311007
300338913926423828248817941241140239112842009751400741706634
354222619689417363569347117901737909704191754605873209195028
853758986185622153212175412514901774520270235796078236248884
246189477587641105928646099411723245426622522193230540919037
680524235519125679715870117001058055877651038861847280257976
054903569732561526167081339361799541336476559160368317896729
073178384589680639671900977202194168647225871031411336429319
536193471636533209717077448227988588565369208645296636077250
268955505928362751121174096972998068410554359584866583291642
136218231078990999448652468262416972035911852507045361090559

g = 2
q = 16158503035655503

650169456963211914124408970620570119556421004875700370853317
177111309844708681784673558950868954852095877302936604597514
426879493092811076606087706257450887260135117898039118124442
123094738793820552964323049705861622713311261096615270459518
840262117759562839857935058500529027938825519430923640128988
027451784866280763083540669680899770668238279580184158948364
536589192294840319835950488601097084323612935515705668214659
768096735818266604858538724113994294282684604322648318038625
134477752964181375560587048486499034205277179792433291645821
068109115539495499724326234131208486017955926253522680545279

Additionally, its embedding field is set to:{
padding = 8

bits_per_int = 8

}

5.2 Elliptic curves
5.2.1 Ed25519

The Ed25519 group is a well-known group, defined in RFC 7748. It is defined by the following
parameters:

• p = 2255 − 19,

• E/Fp is the twisted Edwards curve:

−x2 + y2 = 1− 121665
121666x

2y2,

• g is the unique point in E(Fp) whose y coordinate is 4/5 and whose x coordinate is positive,

• the order of g is q = 2252 + 27742317777372353535851937790883648493.

In the above, positive is defined in terms of bit-encoding:

• positive coordinates are even coordinates (least significant bit is cleared),

• negative coordinates are odd coordinates (least significant bit is set).

Group elements are points represented by their coordinates (x, y), which can be compressed
into a single 256-bit number z = compress(x, y):

• let b be the least significant bit of x shifted to the left by 255 bits,
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• let z be the binary XOR of b and y.

This z can be uncompressed into a single point uncompress(z). This compressed form is used
for serialization, written in hexadecimal, always padded with leading-zeroes so that the resulting
string is always 64 characters.

Additionally, a non-homomorphic encoding is defined as follows:

• let κ = 8 and p = 14;

• it is assumed that each small integer is κ bits (or less);

• [v1, . . . , vn] is encoded as:

ξ = of_ints([v1, . . . , vn]) = uncompress((((v1 × 2κ + v2)× 2κ + · · · )× 2κ + vn)× 2p + ε)

where ε (of p bits or less) is the smallest non-negative integer such that ξ ∈ G;

• the to_ints is the inverse of of_ints, and takes as input a group element ξ and the number n
of encoded integers.

The get_generator function is the pure part of GetGenerator defined in table 9.

6 Shuffle algorithms
The algorithms GenShuffle and GenShuffleProof are referred to in section 4.19. They were taken
from version 1.3.2 of the CHVote System Specification [8], and are given here for self-completeness.
We also give the CheckShuffleProof algorithm, used to check a proof produced by GenShuffleProof.
For more explanations on these algorithms, please refer to the CHVote System Specification.

Input

• e = [e1, . . . , eN ] ∈ ciphertextN : encrypted answers to one non-homomorphic question

• y ∈ G: public key of the election

Algorithm

1. ψ ← GenPermutation(N) // ψ = [j1, . . . , jN ], see table 2

2. For i = 1, . . . , N :

• (e′
i, r

′
i)← GenReEncryption(ei, y) // see table 3

3. e′ ← [e′
j1
, . . . , e′

jN
]

4. r′ ← [r′
1, . . . , r

′
N ]

5. Return (e′, r′, ψ) // e′ ∈ ciphertextN , r′ ∈ ZN
q , ψ ∈ ΨN

Table 1: Function GenShuffle(e, y)
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Input

• N ∈ N: permutation size

Algorithm

1. I ← [1, . . . , N ]

2. For i = 0, . . . , N − 1:

(a) Pick k uniformly at random in {i, . . . , N − 1}
(b) ji+1 ← I[k]
(c) I[k]← I[i]

3. ψ ← [j1, . . . , jN ]

4. Return ψ // ψ ∈ ΨN

Table 2: Function GenPermutation(N)

Input

• e ∈ ciphertext: one encrypted answer to one non-homomorphic question

• y ∈ G: public key of the election

Algorithm

1. Pick r′ uniformly at random in Zq

2. α′ ← alpha(e)× gr′

3. β′ ← beta(e)× yr′

4. Let e′ be a new ciphertext with alpha = α′ and beta = β′

5. Return (e′, r′) // e′ ∈ ciphertext, r′ ∈ Zq

Table 3: Function GenReEncryption(e, y)
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Input
• e = [e1, . . . , eN ] ∈ ciphertextN : encrypted answers to one question; we will denote by αi and

βi the contents of ei

• e′ = [e′
1, . . . , e

′
N ] ∈ ciphertextN : shuffled encrypted answers; we will denote by α′

i and β′
i the

contents of e′
i

• r′ = [r′
1, . . . , r

′
N ] ∈ ZN

q : re-encryption randomizations
• ψ = [j1, . . . , jN ] ∈ ΨN : permutation
• pk ∈ G: the public key of the election
• φ ∈ string: the fingerprint of the election

Algorithm
1. h← GetSecondaryGenerator(), h← GetGenerators(N) // see tables 6 and 7
2. (c, r)← GenPermutationCommitment(ψ,h) // see table 10
3. strc ← JeKJe′KJcK // see table 11
4. u← GetNIZKPChallenges(N, shuffle-challenges|φ|strc) // see table 12
5. For i = 1, . . . , N : u′

i ← uji

6. u′ ← [u′
1, . . . , u

′
N ]

7. (ĉ, r̂)← GenCommitmentChain(h,u′) // see table 13
8. For i = 1, . . . , 4: pick ωi at random in Zq

9. For i = 1, . . . , N : pick ω̂i and ω′
i at random in Zq

10. t1 ← gω1 , t2 ← gω2 , t3 ← gω3
∏N

i=1 h
ω′

i
i

11. (t4,1, t4,2)← (pk−ω4
∏N

i=1(β′
i)ω′

i , g−ω4
∏N

i=1(α′
i)ω′

i )
12. ĉ0 ← h

13. For i = 1, . . . , N : t̂i ← gω̂i ĉ
ω′

i
i−1

14. t← (t1, t2, t3, (t4,1, t4,2), [t̂1, . . . , t̂N ]), strt ← J[t1, t2, t3, t4,1, t4,2]KJ[t̂1, . . . , t̂N ]K
15. y ← (e, e′, c, ĉ, pk), stry ← strcJĉKpk

16. c← GetNIZKPChallenge(shuffle-challenge|φ|strtstry) // see table 14

17. r̄ ←
∑N

i=1 ri mod q, s1 ← ω1 + c× r̄ mod q

18. vN ← 1
19. For i = N − 1, . . . , 1: vi ← u′

i+1vi+1 mod q

20. r̂ ←
∑N

i=1 r̂ivi mod q, s2 ← ω2 + c× r̂ mod q

21. r̃ ←
∑N

i=1 riui mod q, s3 ← ω3 + c× r̃ mod q

22. r′ ←
∑N

i=1 r
′
iui mod q, s4 ← ω4 + c× r′ mod q

23. For i = 1, . . . , N : ŝi ← ω̂i + c× r̂i mod q, s′
i ← ω′

i + c× u′
i mod q

24. s← (s1, s2, s3, s4, [ŝ1, . . . , ŝN ], [s′
1, . . . , s

′
N ])

25. π ← (t, s, c, ĉ)
26. Return π // π ∈ shuffle_proof

Table 4: Function GenShuffleProof(e, e′, r′, ψ, pk, φ)
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Input
• π ∈ shuffle_proof: shuffle proof
• e = [e1, . . . , eN ] ∈ ciphertextN : encrypted answers to one question; we will denote by αi and

βi the contents of ei

• e′ = [e′
1, . . . , e

′
N ] ∈ ciphertextN : shuffled encrypted answers; we will denote by α′

i and β′
i the

contents of e′
i

• pk ∈ G: the public key of the election
• φ ∈ string: the fingerprint of the election

Algorithm
1. (t, s, c, ĉ)← π

2. (t1, t2, t3, (t4,1, t4,2), [t̂1, . . . , t̂N ])← t

3. (s1, s2, s3, s4, [ŝ1, . . . , ŝN ], [s′
1, . . . , s

′
N ])← s

4. [c1, . . . , cN ]← c, [ĉ1, . . . , ĉN ]← ĉ
5. h← GetSecondaryGenerator(), h← GetGenerators(N) // see tables 6 and 7
6. strc ← JeKJe′KJcK // see table 11
7. u← GetNIZKPChallenges(N, shuffle-challenges|φ|strc) // see table 12
8. strt ← J[t1, t2, t3, t4,1, t4,2]KJ[t̂1, . . . , t̂N ]K
9. stry ← strcJĉKpk

10. c← GetNIZKPChallenge(shuffle-challenge|φ|strtstry) // see table 14

11. c̄←
∏N

i=1 ci/
∏N

i=1 hi

12. u←
∏N

i=1 ui mod q

13. ĉ0 ← h

14. ĉ← ĉN/h
u

15. c̃←
∏N

i=1 c
ui
i

16. (α′, β′)← (
∏N

i=1 α
ui
i ,
∏N

i=1 β
ui
i )

17. t′1 ← c̄−c × gs1

18. t′2 ← ĉ−c × gs2

19. t′3 ← c̃−c × gs3
∏N

i=1 h
s′

i
i

20. (t′4,1, t
′
4,2)← ((β′)−c × pk−s4

∏N

i=1(β′
i)s′

i , (α′)−c × g−s4
∏N

i=1(α′
i)s′

i )

21. For i = 1, . . . , N : t̂′i ← ĉ−c
i × g

ŝi × ĉs′
i

i−1

22. Return (t1 = t′1) ∧ (t2 = t′2) ∧ (t3 = t′3) ∧ (t4,1 = t′4,1) ∧ (t4,2 = t′4,2) ∧
[∧N

i=1(t̂i = t̂′i)
]

Table 5: Function CheckShuffleProof(π, e, e′, pk, φ)
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Algorithm

1. h← GetGenerator(−1) // see table 8

2. Return h // h ∈ GN

Table 6: Function GetSecondaryGenerator()

Input

• N ∈ N: number of independent generators to get

Algorithm

1. For i = 0, . . . , N − 1: hi ← GetGenerator(i) // see table 8

2. h← [h0, . . . , hN−1]

3. Return h // h ∈ GN

Table 7: Function GetGenerators(N)
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Input

• i ∈ Z: number of the independent generator to get

State (shared between all runs)

• X ∈ P(N×G) (initialized to ∅): generators to avoid

Algorithm

1. c← (p− 1)/q // typically, c = 2

2. x← SHA256(ggen|i) // i in base 10, output as a big-endian number

3. h← xc

4. If h ∈ {0, 1, g}, abort

5. If ∃j ̸= i, (j, h) ∈ X , abort

6. X ← X ∪ {(i, h)}

7. Return h // h ∈ G

Table 8: Function GetGenerator(i) (for a multiplicative subgroup of a finite field)
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Input

• i ∈ Z: number of the independent generator to get

State (shared between all runs)

• X ∈ P(N×G) (initialized to ∅): generators to avoid

Algorithm

1. x← SHA256(ggen|i) >> 2 // i in base 10, output as a big-endian number

2. b← uncompress(x+ ε) // ε: smallest non-negative integer such that b ∈ E

3. h← b8

4. If h ∈ {1, g}, abort

5. If ∃j ̸= i, (j, h) ∈ X , abort

6. X ← X ∪ {(i, h)}

7. Return h // h ∈ G

Table 9: Function GetGenerator(i) (for Ed25519)

Input

• ψ = [j1, . . . , jN ] ∈ ΨN : permutation

• h = [h1, . . . , hN ] ∈ GN : independent generators

Algorithm

1. For i = 1, . . . , N :

• Pick rji
at random in Zq

• cji ← grji × hi

2. c← [c1, . . . , cN ]

3. r← [r1, . . . , rN ]

4. Return (c, r) // c ∈ GN , r ∈ ZN
q

Table 10: Function GenPermutationCommitment(ψ,h)
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Input

• e = [e1, . . . , eN ] ∈ ciphertextN : array of ciphertexts, or

• c = [c1, . . . , cN ] ∈ GN : array of group elements

Algorithm

1. set S to the empty string

2. For i = 1, . . . , N :

• append alpha(ei), a comma, beta(ei) and a comma to S, or
• append ci and a comma to S

3. Return S // S ∈ string

Table 11: Functions JeK and JcK

Input

• N ∈ N: number of ciphertexts

• S ∈ string: challenge string

Algorithm

1. H ← SHA256(S) // output interpreted as an hexadecimal string

2. For i = 0, . . . , N − 1:

(a) T ← SHA256(i) // input taken as decimal, output interpreted as hexadecimal
(b) ui ← SHA256(HT ) mod q // output interpreted as big-endian

3. u← [u0, . . . , uN−1]

4. Return u // u ∈ ZN
q

Table 12: Function GetNIZPKChallenges(N,S)
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Input

• c0 ∈ G: initial commitment

• u = [u1, . . . , uN ] ∈ ZN
q : public challenges

Algorithm

1. For i = 1, . . . , N :

(a) Pick ri at random in Zq

(b) ci ← gri × cui
i−1

2. c← [c1, . . . , cN ]

3. r← [r1, . . . , rN ]

4. Return (c, r) // c ∈ GN , r ∈ ZN
q

Table 13: Function GenCommitmentChain(c0,u)

Input

• S ∈ string: challenge string

Algorithm

1. c← SHA256(S) mod q // output interpreted as a big-endian number

2. Return c // c ∈ Zq

Table 14: Function GetNIZPKChallenge(S)
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